Edinburgh topology on 2^{κ}

Wolfgang Wohofsky

joint work with Peter Holy, Marlene Koelbing, and Philipp Schlicht

Universität Hamburg

wolfgang.wohofsky@gmx.at

Winter School in Abstract Analysis 2018, section Set Theory & Topology Hejnice, Czech Republic

30th Jan 2018

Let κ be an uncountable regular cardinal.

- κ successor cardinal
- κ inaccessible cardinal

We consider (the generalized Cantor space) 2^{κ} , equipped with two different topologies.

Usually, 2^{κ} is equipped with the following topology:

Definition (Bounded topology)

... is generated by $\{[s] : s \in 2^{<\kappa}\}$

... where
$$[s] = \{x \in 2^{\kappa} : s \subseteq x\}$$

Definition (Bounded topology)

... is generated by the basic clopen sets $\{[s]:s\in 2^{<\kappa}\}$... where $[s]=\{x\in 2^\kappa:s\subseteq x\}$

• $X \subseteq 2^{\kappa}$ is open if $X = \bigcup_{i \in I} [s_i]$

• X is closed if $2^{\kappa} \setminus X$ is open (iff X = [T] for some tree $T \subseteq 2^{<\kappa}$)

- X is dense if for each $s \in 2^{<\kappa} (X \cap [s] \neq \emptyset)$
 - If X is open dense then for each s there is $t \supseteq s$ with $[t] \subseteq X$
- X is nowhere dense if for each s there is $t \supseteq s$ with $X \cap [t] = \emptyset$
- X is meager if $X \subseteq \bigcup_{i < \kappa} A_i$ with each A_i (closed) nowhere dense
- Baire Category: intersection of κ many open dense sets is dense
 - 2^κ is not meager
 - ▶ [s] is not meager

Definition (Bounded topology)

... is generated by $\{[s]:s\in 2^{<\kappa}\}$

... where $[s] = \{x \in 2^{\kappa} : s \subseteq x\}$

s is defined on a "small" domain

"small" means bounded, i.e., of size less than κ

What about other ideals than the ideal of bounded sets?

Let \heartsuit denote the set of partial functions f from κ to 2 with dom(f) non-stationary.

Definition (Edinburgh topology (or non-stationary topology))

... is generated by $\{[f] : f \in \heartsuit\}$

... where $[f] = \{x \in 2^{\kappa} : f \subseteq x\}$

Let \heartsuit denote the set of partial functions f from κ to 2 with dom(f) non-stationary.

Definition (Edinburgh topology (or non-stationary topology))

... is generated by $\{[f] : f \in \heartsuit\}$

... where $[f] = \{x \in 2^{\kappa} : f \subseteq x\}$

- $X \subseteq 2^{\kappa}$ is Edinburgh open if $X = \bigcup_{i \in I} [f_i]$ (with $f_i \in \heartsuit$)
- Every open set is also open in the Edinburgh topology (i.e., the Edinburgh topology refines the bounded topology).
- Each "Edinburgh cone" [f] (i.e., Edinburgh basic clopen set) is closed (but usually not open)
- Edinburgh nowhere dense
- Edinburgh meager
- Baire category: intersection of κ many Edinburgh open dense sets is Edinburgh dense

Are the Borel sets and the Edinburgh Borel sets the same?

Proposition

There are exactly $2^{2^{\kappa}}$ many Edinburgh open sets.

So the answer to the above question is no: there are even more Edinburgh open sets than (usual) Borel sets.

Basic properties of Edinburgh nowhere dense sets:

- every set of size $< 2^{\kappa}$ is Edinburgh nowhere dense
- $\bullet\,$ there is an Edinburgh nowhere dense set of size $2^\kappa\,$
 - there is even a closed such set (actually of the form [T] with T a perfect subtree of 2^{<κ} with uniform splitting):

 $\{x \in 2^{\kappa} : x(\alpha) = x(\alpha + 1) \text{ for each even } \alpha < \kappa\}$

Edinburgh nowhere dense \subseteq Edinburgh meager ?

Theorem

Assume κ is inaccessible or \Diamond_{κ} holds. Then every Edinburgh meager set is Edinburgh nowhere dense.

Proposition

If $f \in \heartsuit$ and $|\operatorname{dom}(f)| = \kappa$, then [f] is closed nowhere dense. So there is a meager set which is not Edinburgh meager.

What about the other direction ???

Lemma

Assume κ is inaccessible or \Diamond_{κ} holds.

Then each co-meager set contains an Edinburgh cone [f]:

given
$$(D_{\alpha})_{\alpha < \kappa}$$
 open dense $\exists f \in \heartsuit \quad \bigcap_{\alpha < \kappa} D_{\alpha} \supseteq [f]$

Theorem

Assume X has the Baire property and the conclusion of the lemma holds. Then "X Edinburgh meager" implies "X meager".

For $a, y \in [\kappa]^{\kappa}$, we say that a splits y if $a \cap y$ and $(\kappa \setminus a) \cap y$ are of size κ .

Definition

A reaping family on κ is a set $\mathcal{R} \subseteq [\kappa]^{\kappa}$ such that no $a \in [\kappa]^{\kappa}$ splits all $y \in \mathcal{R}$.

 $\mathfrak{r}(\kappa)$ is the smallest size of a reaping family on κ .

Theorem (κ inaccessible)

Assume $\mathfrak{r}(\kappa) = 2^{\kappa}$. Then there is an Edinburgh nowhere dense set which is not meager.

Theorem (κ inaccessible)

Assume $\mathfrak{r}(\kappa) = 2^{\kappa}$. Then there is an Edinburgh nowhere dense set which is not meager.

Let \mathfrak{S} denote the set of partial functions from κ to 2 with $|\operatorname{dom}(f)| = \kappa$.

Definition

 $\mathfrak{ph}(\kappa)$ is the smallest size of a family $\mathcal{F} \subseteq \mathfrak{S}$ such that $\bigcup_{f \in \mathcal{F}} [f] = 2^{\kappa}$.

Lemma (κ inaccessible)

 $\mathfrak{ph}(\kappa)$ is the smallest size of a family $\mathcal{F} \subseteq \mathfrak{S}$ such that $\bigcup_{f \in \mathcal{F}} [f]$ is co-meager.

Lemma (
$$|2^{<\kappa}| = \kappa$$
)

 $\mathfrak{ph}(\kappa) = \mathfrak{r}(\kappa).$

Thank you for your attention and enjoy the Winter School...

Hejnice 2011

Thank you for your attention and enjoy the Winter School...

Hejnice 2011